
1 New horizons in industrial mathematics 
 
 
During the last decades a new form for mathematics has gained success in analysing 
industrial data. The basic idea has been to build the solutions to the mathematical 
models in steps in order to optimize the predictions ability of the final solutions. At each 
step the improvement of the solution is judged in two ways, both in the light of the 
present task (fit, optimization etc) and also, how precise the solution is for the given 
uncertain data. The developed methods have business success both at institutions and 
industry. The success is partly due to that the new methods secure better predictions than 
traditional methods and partly that they provide with graphical analysis of data that 
effectively shows the inherent variation in data. The tools presented here are now 
working tools within the field of chemometrics.  
 



1.1 Large sets of data 
In the industry there are for the time being large 
developments within data collection. There are two 
circumstances that are especially prevailing. The first 
one is that it is necessary to collect data from the whole 
production in order to secure the necessary level of 
quality and security of operations. Here the automobile 
factories have shown the way by extensive investments 
during the last decade. The second is the new 
measurement instruments that have been developed. 
Especially within the fields of chemistry there have 
appeared advanced measurement instruments, e.g. the 
modern spectroscopic instruments. These instruments 
cover broad area of wavelengths and therefore give 
many measurement values for each sample. E.g., a NIR 
(Near Infra-Red) instrument typically gives 1050 values 
for each sample. Another instrument, a Raman 
spectroscopy, can give 3300 values for each sample. 
The new mathematics has proved to be efficient in 
handling mathematical models having many variables 
(hundreds, thousands or tenths of thousands). 
 
 
1.2 Procedures of natural sciences 
When there are given data that should be modelled, it is 
recommended to setup a mathematical model, which 
one can argue for by theoretical arguments, and where 
it is reasonable to assume the model for the present 

data. An example could be the use of the least squares 
method, which is summarized in Box 1. This method is 
popular in statistics, and is used as a starting point in  
many types of analysis, like e.g., regression analysis. 
When we work with industrial data, it is usually difficult 
to argue theoretically for a ‘correct model’. If we take 
the example of a NIR instrument, that gives 1050 data 
values for each sample, it is difficult or impossible to 
give precise physical explanations for what the 
individual data values stand for. The technicians can at 
most say that they expect a material to give reflections 
in an interval, say from 400 to 500. There is in general 
not available knowledge about the details of the 
reflections. And it is not necessary to have this 
knowledge in order to obtain satisfactory modelling 
results. The way natural sciences handle mathematical 
models, which are implemented in many program 
packages, have three basic problems involved. 
1. Great expectation to data. There are typically placed 
expectations to the available data, which the data can 
not meet. The variables are often highly correlated and 
there can be considerable uncertainties in the 
measurements of the individual values. Data are thus 
very much different from what we expect, when the 
model is formulated. 
2. Special conditions in data. There are often special 
conditions in data, like e.g., groupings of data values, 
which should be taken into account when formulating 
the model. It means that working with the data often 
leads to the models that are finally applied.  Box 1.1. Least squares method 

 
There are given corresponding data X 
(N×K), and Y (N×M) matrix. 
 
It is supposed a linear model: 
y=b1x1 + … + bKxK,  
where the parameters B= (b1,…,bK) are 
unknown. They are found by minimising |Y-
XB|2 with respect to B. 
 
The solution given by the least squares 
method is B=(XTX)-1XTY. 

3. Too large models. The natural science background 
typically suggests a large model, because there are many 
variables, and knowledge suggests a detailed model. An 
example is data from a NIR instrument. It gives 1050 
variables. Estimation in linear models that contain all 
the variables (it can usually be done, if there are more 
samples than variables), results in models that give 
good fit, but will be not adequate for prediction. 

The conclusion from extensive comparisons is 
that mathematical methods that apply exact or 
(numerically) optimal solutions, do not give satisfactory 
results, when they are applied to industrial data. 
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Confidence interval and significance testing of 
parameters can be carried out by Bootstrapping and 
Jacknifing2. 
 
 
1.4 The H-principle of mathematical 
modelling – A review 
 
The H-principle or the H-method is a 
recommendation of how the modelling procedure 
for any mathematical model should be carried out.. 
A summary of the ideas is presented in Box 1.2. 

A large collection of weighing schemes has 
been developed to adapt to specific situations. The 
weighing schemes have been expanded to multi-
linear algebra (multi-way data). Regression methods 
have been extended to path modelling. Methods 
have been extended to non-linear analysis, dynamic 
systems, multi-block methods, and other fields of 
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Figure 1.1. Results of PLS regression 
.3 The new procedures 

he basic idea is to build the solution by using effective 
uilding blocks1. The procedure is illustrated here by an 
xample, the Beer data. There are present 61 samples of 
IR data from a brewery production of beer. 
urthermore, there is given 61 values of a quality 
arameter for beer. Thus there are given 61 sets, where 
ach set contains 1050 values from a NIR instrument 
nd the corresponding value of the quality parameter. 
he task is to investigate if it is possible to use the NIR 
easurements to predict the quality of the final beer. A 

loser analysis of data shows that it is best only to use 
ariables in the (frequency) interval from 401 to 440. 
he first step is to find a score vector, a profile vector, 

hat is as reliable as possible and as good as possible in 
escribing the quality parameter. When such a score 
ector has been found, the data are adjusted for the 
core vector found, and the analysis starts over again. 
ltogether four score vectors were found. The results 

re shown in Figure 1. The upper part shows the 
bserved value of the quality parameter on the y-axis 
nd the corresponding computed value on the x-axis. A 
ine with slope 45o is drawn in the figure in order to 
etter be able to judge the results. It can be concluded 
hat the four score vectors can be used to predict the 
uality parameter for beer with the desired precision. 
he lower part of the figure shows the difference of the 
bserved and computed value of the quality parameter 
n the y-axis and the process time on the x-axis. It 
hows that the quality parameter can be determined 
ith an uncertainty of around ca. ±0.35. The analysis 
arried out here is a standard PLS regression. 

applied mathematics. 
 
 
1.5 Interpretation of the H-principle 
 
The basic idea is to build up the solution to the 
mathematical model in steps, where at each step an 
optimal balance between the prediction ability of the 
solution and the numerical improvement (in terms of 
fit, optimality etc). The derivation of the solution is 
halted, if further steps in deriving the solution do not 
improve the prediction ability of the solution. The 
solution to the mathematical model in question 
obtained in this way has the property that in the light of 
the given data it provides with almost optimal 
predictions (the optimisation of predictions is carried 
out at each step). This way of carrying out model 
validation at each step, when finding solutions to 
mathematical models, has been called the H-principle 
(or the H-method) of mathematical modelling because 
of the close analogy to the Heisenberg uncertainty 
principle. The mathematical model is the ’tools’ used. 
The more detailed model that is obtained, the more 
uncertainty is introduced due to the tools and the 
variation in data. The H-principle finds the solution 
that gives a balance between improving the solution 
and the ’price’ in terms of predictions, when the 
model is applied. 

This approach is especially important when 
analysing industrial data. This is due to the relatively 
low rank that we typically find in industrial data. The 
traditional approach, like e.g. we find the program 
packages (SAS and others), where we first specify and 
estimate the full model and then carry out a significance 
testing on parameters is not satisfactory, because the 
residual values are not reliable values. 
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It is recommended to build up the solution 
in terms of elementary parts. An 
expression should be computed for the 
possible improvements of the solution in 
terms of fit or other some criteria. Also, 
compute an expression for the precision of 
the possible solutions. These two 
expressions should be balanced as shown 
in 3. The optimisation of 3. gives a 
solution where equal weight is given to the 
(absolute value of) relative increase in 
these terms. The improvement is evaluated 
as suggested in 4.  

Steps of the H-principle 
1.Carry out the modelling in steps. You specify how you want to look 
at the data at this step by formulating how the weights are computed. 
2.At each step compute expressions for 

a) improvement in fit, ∆Fit 
b) the associated prediction, ∆Precision 

3. Compute the solution that maximizes the product  
  ∆Fit × ∆Precision  
4. In case the computed solution improves the prediction abilities of 
the model, the solution is accepted. If the solution does not provide 
this improvement, we stop modelling.  
5. The data is adjusted for what has been selected and start again at 1). 

The main motivation for this approach is 
the prediction aspect of the model. The 
prediction variance for a standard 
regression model is, 
Var(Y(x0)) =  
[YT(I-X(XTX)-1XT)Y]×x0T(XTX)-1x0/(N-K) 
Assuming normal distribution, (XTX)-1 and 
[YT(I-X(XTX)-1XT)Y] are stochastically 
independent, hence both need to be 
modelled. 

Application to linear regression 
It is desired to find a score vector t, t=Xw. There are two basic aspects 
of the task of the score vector:  
a) the size of the improvement in fit, |YTt|2/(tTt) 
b) the associated precision in terms of the variance, σ2/(tTt) 
Balancing these two terms as suggested in 3. we get 
  maximise [|YTt|2/(tTt)]×[1/(σ2/(tTt))]=maximise |YTt|2/σ2 
=maximise wTXTYYTXw/σ2 for |w|=1. Assuming σ2 constant the 
solution is to choose w as the eigen vector associated with the leading 
eigen value to XTYYTXw =λw. This criterion leads to PLS regression. 

For S=XTX+U, with U positive semi-
definite, algorithms have been developed 
of approximating the exact solution B. In 
the analysis each term of the 
decompositions is evaluated. A terms are 
used, if it is judged that further terms do 
not improve the prediction ability of the 
model.  

An example of decompositions in linear regression 
S =  d1 p1 p1T + … + dA pA pAT + … + dK pK pKT  = PDPT 
S-1 =  d1 v1 v1T + … + dA vA vAT + … + dK vK vKT  = VDVT 
X =  d1 t1 p1T + …  +  dA tA pAT +… + dK tK pKT = TDPT 
XTY =  d1 p1 q1T + … +  dA pA qAT +…+ dK pK qKT = PDQT 
B =  d1 v1 q1T + … + dA vA qAT +…  + dK vK qKT = VDQT 
Ŷ=XB= d1 t1 q1T + … + dA tA qAT +…  + dK tK qKT  = TDQT 

Box 1.2. Summary of ideas of the H-principle 

 
 
 

Mathematical 
models

• Solutions become more stable 
(less dependent on small changes in data values)
• Solution optimized with respect to prediction
• Inference from solutions more reliable than by 
standard methods

Model
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Figure 1.2 The role of the H-principle 

  
  

 
E.g., NIR data may contain 1050 variables, but the rank 
(obtained by the H-principle) may be 10 or less. Better 
and more reliable significance testing is obtained, when 
it is based on solution found by the H-principle. 

Many mathematical methods are looking for 
solutions that have full rank, possibly after a 
regularisation (Ridge or Marquardt) of the covariance 
matrix. Examples of such methods are found, when 
solving non-linear models. It will in general be better to 
use the approach suggested by the H-principle and use 
low rank solutions at the iterations. 
 The methods developed provide with a 
conceptual basis of some methods used in 
chemometrics.  

I believe that these methods will be the ones 
that future statistical methods will be based upon. The 
reason is the advance of computers. Computers are so 
fast that an extensive study of the prediction ability of 
the model as suggested by the H-principle can be 
carried out in a very short time. Inference in 
mathematical models is more reliable, when the 
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solution has been derived by this approach than by 
traditional ones. 
 
 
 
1.6 Changes in the solution by increasing 
dimension 
 
For many scientists it is natural to base their methods 
on a certain criterion like e.g., the linear least squares, 
where the sizes of the residuals are minimized. In this 
method it is required to estimate the regression 
coefficients B such that the sizes of the residuals, 
difference Y-XB, are as small as possible. This is 
perfectly normal requirement to the regression 
coefficients.  
 In the literature it is common to see some 
optimization criteria that are used as basis for the 
estimation of the unknown parameters. These criteria 
are natural to use. But there is a price to be paid that 
people may not be aware of. The issues are illustrated 
in the light of an example. 

In Figure 1.3 is shown the variation of the 
solution vector for the regression analysis of the Beer 
data that was used in Figure 1.1. Here the wavelengths 
in the range 400-480 are used. The data matrix X is 

thus 61 times 81. It is possible to compute the 
dimension up to 61, but only the first 25 is shown. By 
using double precision it is not a numerical problem to 
compute the full linear least squares solution. In the 
figure there are 81 curves associated with the 81 x-
variables. When the data matrix X is of low rank, 
curves will fluctuate more by increasing dimension than 
shown here. The regression coefficients are shown for 
auto-scaled data. When the regression coefficients are 
presented in this way, the curves typically will be 
located within a cone. The cone can be very wide. A 
regression coefficient bi, may be positive in the 
beginning, but ending by having a large negative value. 
It may be small in the beginning, get large negative 
value and end with large positive value.  

There are typically three values of the 
dimension that are important. There is a value of the 
dimension, above which we are beyond the numerical 
precision of the data. For this and higher dimension, 
the residuals Y-XB, are smaller than the numerical 
precision given in values of Y. The second is the 
dimension that was found significant by traditional 
significance tests. The third is the dimension that is 
optimal in the sense that the best prediction is obtained 
using this dimension. One can ask: Why is the 
significant dimension often a lot larger than the one 
found at the best prediction? The answer is that when 
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Figure 1.3 Variation of the solution vector with increasing dimension 
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searching among many correlation coefficients, there 
will automatically be found several coefficients that 
exhibit significance. For 81 x-variables, like here, we are 
working in an 81-dimensional space. When searching 
among 81 x-variables, we are bound to get spurious 
effects. This shows normally in small score vectors (a 
score vector is the vector showing the additional values 
from X compared to the previous ones). It is a 
fundamental problem in using tests based on the 
correlation coefficient, or equivalent ones, that they are 
invariant to the size of the score vector involved. 

When scientists use the exact solution based 
on some optimization criterion (that theoretically might 
provide with optimal (unbiased, minimum variance etc) 
solution), the solution vector will typically exhibit 
behaviour as shown in Figure 1.3, when working with 
industrial data. Why do the optimization criteria give 
solutions that provide with bad predictions, when 
applied to industrial data? The reason is that the criteria 
assume that the data fit appropriately to the specified 
data. E.g., the linear least squares method gives 
unbiased and minimum variance estimates of regression 
coefficients if the model is correct for the present data. 
But typically the model formulated is not correct. 

It is a fundamental problem for the program 
packages for statistical analysis that they base their 
significance testing on the full rank solution. The full 
solution may be fluctuating wildly, and a significance 
testing may give highly unreliable results. 

Companies working with NIR data that use the 
methods presented here, measure 1050 wavelengths, 
variables, select typically 30-60 wavelengths by the 
methods presented here. Also, the dimension used is 
typically between 3 and 6. Thus, optimal predictions are 
obtained by using 3 to 6 score vectors that are derived 
from an X matrix with the number of columns between 
30 and 60. The methods used are the ones presented 
here or are basically equivalent to them in the sense 
that the same results can be obtained by the ones 
presented here. 
 
 
1.7 Standard plots associated with data 
analysis 
 
When carrying out data analysis it can be recommended 
to look at following plots to study the results of the 
analysis: 
  
• Observed versus computed Y-values. The 

columns of Y are drawn against the corresponding 
columns of Ŷ=XBA. The graphs are supplied by 
different measures of how good a fit has been 
obtained. 

• Y-values against the score vectors. These graphs 
show the quality of the fit at each step of the 

computations. In case of Stepwise Regression 
analysis the weight vectors are given as wa 

=(0,0,…,0,1,0,…), where 1 corresponds to the 
variable selected. In this case the graphs are called 
’Added variable plots’.  

• Y-values against the residuals. The residuals are 
given as E=Y-XBA. If the plots of the columns of 
Y against the corresponding column of E show 
systematic variations, it indicates that the modelling 
task has not been successful.  

• The Y-residuals. The columns of the residual 
matrix E are to exhibit random behaviour. 
Therefore, plots, where the y-axis is a column of E 
and x-axis is e.g., the sample number or a score 
vector, should show random scatter of points. 
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Figure 1.4. Schematic illustration of vectors 
n the numerical computations associated with using 
he algorithms of the H-principle there are computed 
our sets of vectors, wa, pa, va, and ta, at each step. 
hese vectors are schematically illustrated in Figure 1.4. 

n the following it is described how we look at these 
ectors and how they can be used in different types of 
lots. 

 wa, the weight vector. It reflects the emphasis of 
the analysis. Different weights give different 
regression analysis. In PLS-regression or PLS-
regression type of analysis they are computed as 
shown in Box 1.2, where X is the reduced X-
matrix, X=Xa-1. In the plots of the vectors we look 
for if one or more variables get small weights for 
all weight vectors. If we can see that one or more 
of them get small weights, it is investigated if they 
should be removed from analysis. 

 ta, the score vector. It is computed as ta =Xa-1wa 
or ta = Xva. They define the latent structure. They 
show what has been used of X and how we can 
describe Y. Pair wise plots of the score vectors 
show the variation in the part of data that is being 
used. 
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• pa, the loading vector. It is computed as  
pa =Sa-1wa. If S=XTX, then pa =XTta. If the X 
matrix has been auto-scaled, and ta scaled to unit 
length, the loading vector pa can be viewed as the 
correlation coefficients between the original 
variables and the ath score variable. In the general 
case where S is any positive definite matrix, a 
similar interpretation is used. Pair wise plots of the 
loading vectors show the correlation structure in 
data. 

• va, the loading weight  vector. It is given by  
pa=Sva. They show how pa is derived from the 
correlations of the original X-variables. Since S0=S, 
we have v1=w1. We study the loading weight vector 
in order to know how the original variables 
generate the latent structure.  

 
Figure 1.4 shows that the vectors wa, pa, and va are of 
the same size. It also emphasizes that the score vectors 
ta are used for describing both X and Y, although the 
primary purpose with the analysis is to describe Y. In 

the applied work much time is spent on analyzing how 
the score vectors describe X. Note that all the graphical 
analysis above can be done for any choices of the 
weight vectors wa that have been selected and any 
covariance matrix S.  

Example. Score plots from PLS Regression 

The McMaster University in Toronto, Canada, has 
established in cooperation with 16 large companies a 
centre, McMaster Advanced Control Consortium3. The 
purpose of this centre is to apply these techniques on 
the ‘factory floor’. It has given the companies essential 
competition advantages to apply these techniques4. 
Furthermore, it has had positive influence on the staff 
to be trained in reading these plots in order to study the 
operating conditions. We shall here look at an example 
from an introductory analysis of the operations. There 
have been measured 12 process variables. Y contains 
the values of the quality variables. The measurements 
are 289 hourly ones. Thus X is a 289×12 matrix. In the 
practical work much time is spent on how the score 
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Figure 1.5. Pair wise plot of the first four score vectors. 298 points on each graph. 
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vectors relate to X. An example is illustrated in Figure 
1.5, which shows the pair-wise plot of the first four 
score vectors. When looking at the plot of score vector 
no. 2 versus no. 3, we can see that the points fall into 
two groups. A closer analysis shows that one group 
corresponds to the samples for the first 144 hours, 
while the second group the last 154 hours. By 
modelling X also, we are able to detect quickly that 
there have been changes in the operating condition 
almost half ways of the process. 
 
 
1.8 New methods and new mathematics 
 
The criteria that the H-principle suggests are easy to 
compute and fast to implement. This has led to new 
methods in modelling data. Here we shall briefly 
describe briefly one type of methods, Path Modelling, 
that is used for analyzing a network of data blocks. In a 
regression analysis there are given two data blocks, X 
and Y, where the rows of X and Y are corresponding 
samples. We write X⇒Y to show that a new sample in 
X is used to estimate a new sample in Y. Here X is an 
input data block and Y an output data block. For three 
data blocks we can write X⇒Y⇒Z, to indicate that a 
sample in X is used to estimate a sample in Y, and this 
estimate is used to estimate a new sample in Z. Here X 
is an input data block and Z an output data block. The 
numerical methods do not distinguish rows from 
columns. Thus, they can be used to project along rows, 
X ⇑ Y. And these can be mixed in different ways, 
X⇑Y⇒Z. The H-principle and these simple ideas have 
been used to formulate methods to analyze an arbitrary 
large network of data blocks, with severalinput and 
output data blocks. These methods have great 
possibilities in the industry, because we can view one 
data block as the data from one production place. 
These methods provide with possibilities to estimate 
from production places that are located somewhere in 
the network, the production data that are located later 
in the production. 
 The procedures suggested by the H-method 
are based on weighing the variable such that the results 
are reliable and good to use. Similar weighing 
procedures can be used on the rows of X. These two 
types of weighing can be combined to satisfy some 
special modelling tasks. In fact this weighing procedure 
can be extended to multi-linear algebra, where data 
matrices have multiple indices. This has led to a new 
type of mathematics for multi-linear algebra. Using this 
approach the concepts like rank, inverse and others 
become uniquely defined. The importance of this 
approach is due that these methods are natural 
extensions of weighing variables to two-ways weighing 
two-way data and multi-way weighing of multi-way 
data. These multi-way methods reduce to standard 

methods of e.g. regression, if only one type of weighing 
is used or only one mode gives significant variation.  
 
1.9 Industrial success 
 
The methods described here have obtained success at 
many companies and institutions. At the department of 
Dairy and Food Science, KVL, Copenhagen, there are 
around 30 employees working daily with these 
methods5. The company Foss-Electric6 in Hillerød, 
Denmark, produces different types of measurement 
instruments based on the NIR technology. They use 
these methods and the NIR technology to estimate the 
chemical contents of the samples (diary product, corn, 
oil, wine and other products). They have yearly sales of 
these measurement instruments of around 300 mio 
euros. 
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